Level crossings of a random polynomial with hyperbolic elements

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Level Crossings of a Random Polynomial with Hyperbolic Elements

This paper provides an asymptotic estimate for the expected number of AMevel crossings of a random hyperbolic polynomial gi cosh x + g2 cosh 2x + ■ ■ ■ + g„ cosh nx , where g¡ (j = 1, 2,..., n) are independent normally distributed random variables with mean zero, variance one and K is any constant independent of x . It is shown that the result for K = 0 remains valid as long as K = K„ = 0{s/n).

متن کامل

On Expected Number of Level Crossings of a Random Hyperbolic Polynomial

Let g1(ω), g2(ω), . . . , gn(ω) be independent and normally distributed random variables with mean zero and variance one. We show that, for large values of n, the expected number of times the random hyperbolic polynomial y = g1(ω) coshx + g2(ω) cosh 2x + · · · + gn(ω) coshnx crosses the line y = L, where L is a real number, is 1 π logn+ O(1) if L = o( √ n) or L/ √ n = O(1), but decreases steadi...

متن کامل

Level Crossings and Turning Points of Random Hyperbolic Polynomials

In this paper, we show that the asymptotic estimate for the expected number of K-level crossings of a random hyperbolic polynomial a1 sinhx+a2 sinh2x+···+ an sinhnx, where aj(j = 1,2, . . . ,n) are independent normally distributed random variables with mean zero and variance one, is (1/π) logn. This result is true for all K independent of x, provided K ≡Kn =O(√n). It is also shown that the asym...

متن کامل

Level crossings of a two-parameter random walk

OO F Level crossings of a two-parameter random walk Davar Khoshnevisan , Pál Révész, Zhan Shi Department of Mathematics, University of Utah, 155 S, 1400 E JWB 233, Salt Lake City, UT 84112–0090, USA Institut für Statistik und Wahrscheinlichkeitstheorie, Technische Universität Wien, Wiedner Hauptstrasse 810/107, A-1040 Vienna, Austria Laboratoire de Probabilités UMR 7599, Université Paris VI, 4 ...

متن کامل

Mean Number of Real Zeros of a Random Hyperbolic Polynomial

Consider the random hyperbolic polynomial, f(x) = 1a1 coshx+···+np × an coshnx, in which n and p are integers such that n ≥ 2, p ≥ 0, and the coefficients ak(k = 1,2, . . . ,n) are independent, standard normally distributed random variables. If νnp is the mean number of real zeros of f(x), then we prove that νnp = π−1 logn+ O{(logn)1/2}.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1995

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1995-1264810-1